USE OF BALLOON VALVOTOMY AS BRIDGE TO SURGERY FOR SEVERE HIGH RISK MITRAL STENOSIS

Prof. Gerald Yonga
MBChB, MMed, MBA, FRCP(Edin), FESC, FACC
Aga Khan University Hospital
Nairobi, Kenya.
RHEUMATIC HEART DISEASE IN AFRICA

- Rheumatic heart disease amongst children and young adults is still prevalent in Africa (7-35 cases/1000 – by echo, 1.7/1000 - clinical)
- Most earlier were studies hospital based, cross-sectional and nit detailed enough. Population studies and REMEDY will bridge this knowledge gap
- Many patients have rheumatic fever and/or rheumatic valve dysfunction and are not aware or are not on follow-up.
- Prevention and timing of intervention is therefore a serious challenge in most African countries
- Mitral valve is by far the most affected valve. Predominantly mitral regurgitation but stenosis also significant
- Mitral stenosis represents a subset of rheumatic fever that follows a slower indolent course mostly showing up at severe stenosis stage
- Inadequate prevention, screening/diagnosis and follow-up
CHALLENGES OF VALVE DISEASE SERVICES IN AFRICA

- Few Catheter interventions Centres (esp. Valve)
- Few “active” facilities for open heart surgery
- Unable to afford the surgery even when available.
- Late/advanced presentations with complications
- Increased high surgical risk/inoperable patients

FREQUENT SCENARIO

- Detailed individual cases analysis/discussions for possible options for helping desperate advanced high risk cases
INDICATIONS FOR PBMV

• SYMPTOMATIC SEVERE MITRAL STENOSIS
 - Suitable (MR grade, other valves, Wilkins score)

• ASYMPOTOMATIC SEVERE MITRAL STENOSIS
 - intended pregnancy/ in pregnancy
 - atrial fibrillation
 - thrombo-embolic phenomena
 - prior to major extra-cardiac surgery
SURGERY IN MITRAL STENOSIS

INDICATIONS
- Unavailability of PBMV capabilities
- Unsuitable for PBMV
 (MR grade $>2/4$, other valves involved, Wilkins score >10)

HIGH RISK/CONTRA-INDICATIONS
- Severe LV dysfunction (LVEF $<30\%$)
- Severe PHTN (systemic PAP or $>100\text{mmHg}$)
- Other organ significant dysfunction (kidney, liver, pulmonary, cerebral)
INDICATIONS FOR PBMV

• SYMPTOMATIC SEVERE MITRAL STENOSIS
 - Suitable (MR grade, other valves, Wilkins score)
 - ? Bridge to surgery for high risk patients (not ideal but will benefit on risk-benefit analysis)

• ASYMPTOMATIC SEVERE MITRAL STENOSIS
 - intended pregnancy/ in pregnancy
 - atrial fibrillation
 - thrombo-embolic phenomena
 - prior to major extra-cardiac surgery
Percutaneous Balloon Mitral Valvotomy (PBMV)

- PBMV has been performed in Kenya since 1994 (Bonhoeffer P, Yonga G., et al Mitral dilatation with the new multi-trac technique. *Cath Cardiovasc Diagn* 36;189,1995.)

- Author has > 1000 case series REPORT
- Series shows < 2% procedure mortality & major complications.
- 10yr event free survival in 84% of cases (Yonga G, Bonhoeffer P et al Long-term results of percutaneous balloon mitral valvotomy using multi-track technique in Kenya. *Eur Heart J* 2009; 30(suppl), 392)

- Method used is predominantly Multi-track double balloon (total cost approx. US$ 3,000/case without catheter re-use).
PATHOLOGY OF MITRAL STENOSIS

Driver for MS pathophysiology is persistently elevated trans-mitral pressure gradient resulting into:-

• reduced cardiac output (vital organs hypoperfusion -renal, coronary, cerebral),

• Lt atrial dilatation, dysfunction, AF & systemic thrombo-embolism

• pulmonary oedema, pulmonary arterial hypertension, right ventricular failure and system venous congestive pathology (hepatopathy, ascites, venous thrombo-embolism)

• Without intervention, functional status does not change and mortality is about 50% within 1yr.
Principal of Bridge PBMV

Significantly reducing trans-mitral pressure gradient will:

• Improve cardiac output, coronary perfusion and LV function, renal & cerebral flow and function.
• Improve LA function, prevent embolism and atrial fibrillation mechanisms
• Relieve persistent pulmonary oedema & HTN, improve RV function and reverse/halt hepatopathy
• Eventually render the patient fit for surgery
Multi-track method of balloon Valvotomy

PRE-PBMV SEVERE MITRAL STENOSIS – 2D

PHT: 307.4ms
MVA: 0.72cm²
PRE-PBMVSEVERE MITRAL STENOSIS DOPPLER
PRE-PBMV SEVERE PULMONARY HTN
POST PBMV MVA
Post PBMV
POST-PBMV MVA DOPPLER

1. MVpeakE = 2.20 m/s
2. MVpeakA = 2.20 m/s
3. MV PHT = 128 msec
 MV DecT = 436 msec
 MVA = 1.72 cm²

E/A: 1.00
LONGTERM RESULTS – EVENT FREE SURVIVAL

<table>
<thead>
<tr>
<th>STUDY</th>
<th>No.</th>
<th>Av Age (yrs)</th>
<th>Follow up (yrs)</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen (1992)</td>
<td>146</td>
<td>59</td>
<td>5</td>
<td>51**</td>
</tr>
<tr>
<td>Orange (1997)</td>
<td>132</td>
<td>44</td>
<td>7</td>
<td>65**</td>
</tr>
<tr>
<td>Ben Farhat (1998)</td>
<td>30</td>
<td>29</td>
<td>7</td>
<td>90*</td>
</tr>
<tr>
<td>Menevean (1998)</td>
<td>532</td>
<td>54</td>
<td>7.5</td>
<td>52*</td>
</tr>
<tr>
<td>Stefanadis (1998)</td>
<td>441</td>
<td>44</td>
<td>9</td>
<td>75*</td>
</tr>
<tr>
<td>Hernandez (1999)</td>
<td>561</td>
<td>53</td>
<td>7</td>
<td>69*</td>
</tr>
<tr>
<td>Iung (1999)</td>
<td>1024</td>
<td>49</td>
<td>10</td>
<td>56**</td>
</tr>
<tr>
<td>Palacios (2002)</td>
<td>879</td>
<td>55</td>
<td>12</td>
<td>33*</td>
</tr>
<tr>
<td>Shaw (2003)</td>
<td>405</td>
<td>61</td>
<td>10</td>
<td>42*</td>
</tr>
<tr>
<td>Yonga (EHJ 2009)</td>
<td>422</td>
<td>31</td>
<td>10</td>
<td>84**</td>
</tr>
</tbody>
</table>

* = survival without intervention
** = survival without intervention & in NYHA class I-II
Research Methods

• Retrospective case series of patients who were candidates for surgery but too sick (clinically very sick, severe PHTN, severe LV dysfunction) and not ideal for PMBV (Wilkin’s score 8-11 and MR ≤2+) and underwent bridge PBMV.

• Cases of “bridge PBMV” done between Jan 2001 to June 2015 and 1yr follow up data available (by mobile phone call & file) were studied.

• Status at 1 month, 3 months, 6 months, and 12 months were recorded where data available.

• Outcome measures:- NYHA functional class, CV complications/admissions for heart valve related problem, heart surgery and cardiac related death.

• Analysis (compared to natural hx of severe mitral valve dx – here-in referred to as NO PBMV)
RESULTS

• Mortality data (main outcome) available for 98%
• Majority of PBMV (80-87%) became eligible for surgery within 3-6mths (NYHA 2, PAP <60mmHg at rest, LVEF>40%, no significant vital organ dysfunction)
• 61% were able to have surgery
• All had mitral valve replacement (MVR) by mechanical prosthesis.
• At 12mths, mortality was significantly reduced (9.9% vs expected 48.5%), complication rates (6.6% vs 18.7%) and NYHA III-IV much less (10% vs 86%)
Mortality

(compare to natural hx of severe MVD)

<table>
<thead>
<tr>
<th>Time</th>
<th>PBMV</th>
<th>NO PBMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 MONTH</td>
<td>0%</td>
<td>0.80%</td>
</tr>
<tr>
<td>1 MONTH</td>
<td>5.50%</td>
<td>34.40%</td>
</tr>
<tr>
<td>3 MONTHS</td>
<td>5.70%</td>
<td>43.90%</td>
</tr>
<tr>
<td>6 MONTHS</td>
<td>6.60%</td>
<td>48.50%</td>
</tr>
<tr>
<td>12 MONTHS</td>
<td>9%</td>
<td></td>
</tr>
</tbody>
</table>
Follow-up Complication rates (CV & other)

- 0% at 0 MONTH
- 1.60% at 1 MONTH
- 4.90% at 3 MONTHS
- 5.70% at 6 MONTHS
- 6.60% at 12 MONTHS

- 0% at 0 MONTH
- 4.50% at 1 MONTH
- 8.10% at 3 MONTHS
- 14.10% at 6 MONTHS
- 8.70% at 12 MONTHS

Lines:
- Blue line: PBMV
- Red line: NO PBMV
Proportions of patients in NYHA class III-IV

- PBMV
- NO PBMV

0 MONTH 1 MONTH 3 MONTHS 6 MONTHS 12 MONTHS

- 87% 85% 86% 84% 86%
- 83% 85% 86% 84% 86%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Conclusions

• Late presentation of severe valve disease remains a significant problem in Sub-Saharan Africa.
• This is complicated by scarce facilities for cardiac surgery, cardiac intervention and inability to afford.
• Need for innovative approaches to improve survival
• Modification of PBMV indications is needed.
Asante daktari