

Food, Medicine and Healthcare Administration and Control Authority of Ethiopia

Standard Treatment Guidelines for Primary Hospital

Third Edition, 2014

FOOD, MEDICINE AND HEALTHCARE ADMINISTRATION AND CONTROL AUTHORITY OF ETHIOPIA

STANDARD TREATMENT GUIDELINES FOR PRIMARY HOSPITAL

THIRD EDITION,2014

CONTENTS

ACKNO	DWLEDGMENTS	7
ACRON	NYMS	12
PREFA	CE	16
INTRO	DUCTION	17
CHAPT	ER I: GOOD PRESCRIBING AND DISPENSING PRACTICES	1
	ER II: CARDIOVASCULAR DISORDERS	
1.	Acute Cardiogenic Pulmonary Edema	
2.	Endocarditis (Infective Endocarditis)	25
3.	Heart Failure	31
4.	Hypertension	39
5.	Ischaemic Heart Disease	46
6.	Rheumatic Fever	
	ER III: ENDOCRINE DISORDERS	57
1.	Adrenal Insufficiency	
2.	Cushing's Syndrome	58
3.	Diabetes Mellitus	
4.	Gout	
5.	Hypothyroidism	
6.	Thyrotoxicosis	
	ER IV: GASTROINTESTINAL TRACT AND LIVER DISORDERS.	
1.	Constipation	
2.	Dyspepsia And Peptic Ulcer Disease	74 75
3.	Hemorrhoids	70
4.	Hepatitis	
5.	Acute Liver Failure And Fulminant Hepatitis	
6.	Liver Cirrhosis	
	ER V: HEMATOLOGIC DISORDERS	05
1.	Anemia	
2.	Immune Thrombocytopenic Purpura (ITP)	
3.	Venous Thrombo Embolism	
	ER VI: INFECTIOUS DISEASES	ດວ
1 .	Acquired Immunodeficiency Syndrome (AIDS)	32
1. 2.	Amebiasis	102
2. 3.	Amebic Liver Abscess	103
3. 4.	Anthrax	
4. 5.	Bacillary Dysentery	
6.	Brucellosis	
7.	Chalana Chalana	
8.	Cholera	118
9. 10.	Clostridium Difficille Associated Disease (CDAD)	
	Cryptococcosis	121
11.		
12.	Giardiasis	128
13.	Intestinal Helminthic Infestations	
14.	Leishmaniasis	132
15.	Leprosy (Hansen's Disease)	139
16.	Malaria	
17.	Neutropenic Fever	163
18.	Onchocerciasis	
19.	Rabies	
20	Relansing Fever	1/4

ACKNOWLEDGMENTS

The Ethiopian Food, Medicine and Healthcare Administration and Control Authority (EFMHACA) would like to extend its sincere appreciation to USAID/SIAPS for its technical and financial assistance for the revision of these standard treatment guidelines. The Authority would like also to thank the consulting firm, Bethel teaching hospital, for its commitment to complete this important task.

We would also like to give special acknowledgement to the STG Core group, FMHACA task force and the expert group members for their unreserved effort to bring this document to reality.

Last but not least, the Authority would also like to recognize and acknowledge the contribution of all participants of the consultative workshops and all editors for their invaluable contributions in scrutinizing and finalizing this document.

Contributors and editors of the 3rd edition of the STG

i. Food, Medicine and Health Care Administration and Control Authority (FMHACA)

ii. Consultant

Bethel Teaching Hospital

iii. STG Core Team

Prof. Eyasu Makonnen Pharmacologist (Chairperson)

Dr. Kassahun Kiros Gynacologist
Dr. Yilikal Adamu Ophthalmologist

Dr. Yewondwossen Tadesse Internist

Dr. Alemayehu Keno Pharmacologist (Secretary)

iv. Experts

Dr. Addisu Melkie Internist

Dr. Endale Teferra Pediatrician

Dr. Mathewos Assefa Oncologist

Dr. Eshetu Kebede Public Health Specialist

Dr. Seble FikreMariam Pediatrician

Dr. Admassu Tenna Infectious Disease Specialist

Dr. Girma Tesema ENT Specialist
Dr. Solomon Worku Dermatologist

v. Task Force Members(Coordinators)

Mr. Mengsteab Wolde Aregay Deputy Director General,

FMHACA

Mr. Kidanemariam GebreMichael Task Force Chair Person,

FMHACA

Mr. Ajema Bekele Pharmacist, Task Force

Secretery, FMHACA

Mrs. Seble Shambel Pharmacologist, FMHACA

Mr. Hailu Tadeg Deputy Chief of Party, USAID/SIAPS

Mr. Edmealem Ejigu Senior Technical Advisor, USAID/SIAPS

vi. Editors

Mr. Edmealem Ejigu

Mr. Ajema Bekele

Mrs. Seble Shambel

Mr. Kidanemariam G/Michael

Miss Raey Yohannes (Pharmacologist)

vii. Workshop participants

Full Name	Profession	Organization
Halima Abate Hallalo	MD	Ethiopian Health Insuranc Agency
Ayanaw Takele Guadie	Health Officer	Amhara Health Bureau
Samater Ahmed Nur	Drug misuse	Esfm HACA
Galagay Zewdie Workineh	MD	FHRH (B/Dar)
Mulugeta Tarekegn Angamo	Clinical Pharmacist	Jimma University
Hiwot Adamu Mengesha	Pharmacist	Diredawa HB
Muluken Tadele Wondimagegn	Pharmacist	GH&HPQPFFRA
Mengistu Mekuria Gebre	Health Officer	Bole 17 Health Ceneter
Yewondwossen Tadesse Mengsite	MD	Tikur Anbessa H
Eskinder Kebede Weldetinsaye	MD.OB&GYN	ESOG
Yilkal Adamu Bizuneh	MD	AAU, SOM
Yisihak Girma Tolla	Pharmacist	AAFMHACA
Eyasu Mekonnen	Pharmacology	AAU SOM
Mengestab W/Aregay Teferi	Pharmacist	FMHACA
Seble Shambel Eniyew	Pharmacologist	FMHACA
Addisu Melkie Eijgu	MD Internist	AAU.SOM
Rahel Girma Demisse	Pharmacist	URHB
Zenahebezu Abay Alemayehu	Intenist	University of Gondar
Admasu Tenna Mamuye	Infectious Disease Specialist	AAU SOM
Tigist Tekle Boba	HO	Butajira H/Center
Haftay Berhane Mezgebe	Clinical Pharmacist	MU,SOP
Getahun Gurmessa Dadi	Pharmacist	ICAP Ethiopia
Seble Fikremariam Pondit	Pediatrician	Bethel Teaching General Hospital
Asefa Ayehu Desta	Expert	FMHACA
Azusa Sato	MD, Technical Advisor	FMOH/EHIA
Wolde Wochamo Ludego	C/Officer	SNNPRHB
Asefa Miherete Tefera	H.O	Tigray /South east Eedrta
Esayas Kebede Gudina	Internist	Jimma University
Tatek Getachew W/Michael	H.O	Adea Woreda Hldi H/C
Addisalem Ketema Tadesse	H.O.	Oromia RHB
Zinaye Feleke Fikadu	MUEA	I-Tech Ethiopia
Girum Abebe Tesema	Cardiologist	Addis Cardiac
Debrishwork Bezabhi W/yohannes	H.O	B/Dare /Abay H/C
Teshale Seboxa	MD MSre	SHS,SM.AAU.BLC

Full Name	Profession	Organization	
Girma Tessema Defersha	ENT Specialist.	ENT Society	
Yohannes Jorge Lagebo	Pharmacist	EPHA.AA	
Mahlet Dejene Desalegn	Expert	FMHACA-AA	
Wubshet Hailu Tesfaye	Lecturer	Gonder UN	
Esayas Mesele Tsegaye	FMOH	FMOH	
Rahima Ibrahim Yimam	Radiography	FMHACA	
Haimanot Brihane Alema	Pharmacologist	TRHB	
Girma Tefera Worku	Pharmacist	PRLO	
Zelalem Aseffa Gobeza	Surgeon	SSE	
Mikiyas Cherinet Kifetew	MD	Meariya Hospital	
Kassahun Kiros Gessu	Gynacologist	AAU	
Asnake Limenhe Awoke	Psyhicatist	AAU CHS, Addis Ababa	
Nega Gossa	OR		
Tamrat Tesfaye Tofie	Pharmacist	FMHACA	
Dr. Alemayehu Mekonnen	Pediatric Health Advisor	JHU Tsehay	
Yared Hailu W/Mariam	Nurse	DDRHB	
Dagmawi Abebe Ayele	НО	D.D(SUC)	
Jiksa Debessa Muleta	Physician	Adare Hospital	
TadesseTekeste Girma	Environmental Health officer	A.R.H.B.	
Mathewos Assefa W/Giorgis	MD	AAU SOM	
Endale Tefera Dejene	Pediatric Cardiologist	AAU SOM	
Yenus Mohammed Agihalie	M&E	Afar R.H/B.	
Negusse Tegegne Gulelat	Dermatologist	AAU, SOM	
Kassa Tammiru	Intenist	Adama G.HOsp	
Gebremedhin B/Mariam G/Tekle	Pharmacist	EPA	
Mamo Engdayehu Belay	Pharmacist	FMHACA	
Ajema Bekele Yadeta	Pharmacist	EFMHACA	
Solomon Worku Mengesha	Dermatologist	AAU	
Djemal Suleiman Mohammed	Radiology Technologist	Bettle T.G.Hospital	
Tefsaye Bediru Jafar	CEO	Ethio.Nursess Asso.	
Gizachew Taddesse Akalu	Clinical microbiologist	Eth.Medical Assoc.	
Ejegayehu Yeshitela Megria	Pharmacist	EFMHACA	
Yenenesh Kassaye Tefera	Pharmacist	EFMHACA	
Hanchacha Kumo Buna	НО	SNN.H.B	
Hailu Tadeg	Pharmacist, Deputy Director	USAID/SIAPS	
Edmealem Ejigu	Pharmacist, Technical Advisor	USAID/SIAPS	
Mengestab W/Aregay Teferi	Pharmacist, Deputy Director	FMHACA	

ACRONYMS

ACD	Allergic contact dermatitis		
ACEIs	Angiotensin converting enzyme inhibitors		
ACS	Acute Coronary Syndrome		
ADL	Acute adenolymphangitis		
ADRs	Adverse Drug Reactions		
AFB	Acid fast Bacilli		
AIVR	Accelerated Idioventricular Rhythm		
AKI	Acute kidney Injury		
ALF	Acute liver failure		
ARBs	Angiotensin receptor blockers		
ART	anti-retroviral therapy		
AV	Atrio ventricular		
BID	Twice a day		
BMI	body mass index		
C/Is	Contraindications		
CBC	Complete blood count		
CDAD	Clostridium Difficille Associated Disease		
CKD	Chronic kidney Injury		
CL	Cutaneous leishmaniasis		
CLL	Chronic lymphocytic leukemia		
CML	Chronic Myelogenous Leukemia		
CNS	Central nervous system		
COPD	Chronic Obstructive Pulmonary Disease		
CPR	Cardiopulmonary resuscitation		
CRP	C-reactive protein		
CSF	Cerebrospinal fluid		
D/Is	Drug interactions		
D/S	Dextrose in Saline solution		
D/W	Dextrose in water solution		
DBS	Dry Blood Spot		
DEC	Diethylcarbamazine citrate		
DKA	Diabetic Ketoacidosis		
DLA	Dermatolymphangioadenitis		

DMARD	Disease-modifying anti-rheumatic drugs		
DST	Drug Susceptibility Testing		
DVT	deep vein thrombosis,		
ECG	electrocardiogram		
ENL	Erythema Nodosum Leprosum		
ENT	Ear, Nose and Throat		
ESR	erythrocyte sedimentation rate		
ESRD	End Stage Renal Disease		
FH	Fulminant hepatitis		
FMHACA	Food, Medicine and Health Care Administration		
	and Control Authority		
FPG	Fasting plasma glucose		
G	Gram		
GDM	Gestational Diabetes Mellitus		
GERD	Gastro Esophageal Reflux Disease		
GFR	Glomerular Filtration rate		
GI	Gastrointestinal		
GTD	Gestational Trophblastic diseases		
GTN	Gestational Trophoblastic Neoplasia		
HDL	high-density lipoprotein cholesterol		
HHS	Hyperglycemic Hyperosmolar State		
Hrs	Hours		
ICD	Irritant Contact Dermatitis		
IDU	Intravenous Drug Use		
IHCP	Intra-hepatic cholestasis pregnancy		
IM	Intramuascular		
IOP	Intra-ocular pressure		
IRIS	Immune Reconstitution Immune Syndrome		
ITP	Immune Thrombocytopenic Purpura		
IU	International Unit		
IUGR	Intrauterine growth restriction		
IV	Intravenous		
IVDA	intravenous drug abuse endocarditic		
LDL	low-density lipoprotein cholesterol		

MAT	Multifocal Atrial Tachycardia		
MDR	Multi Drug Resistance		
MDT	Multi-drug therapy		
MI	Milliliter		
MNT	Medical Nutrition Therapy		
МОН	Ministry of Health		
MSH	Management Sciences for Health		
N/S	Normal saline solution		
NNRTI	Nucleoside Reverse Transcriptase Inhibitors		
NRTIs	Nucleoside Reverse Transcriptase Inhibitors		
NSVT	Non sustained ventricular tachycardia		
NVE	native valve endocarditic		
OGTT	Oral Glucose Tolerance Test		
P.O	Per Os (mouth)		
P/Cs	Precautions		
PCP	Pneumocystis Carinni Pneumonia		
PEP	Post-exposure prophylaxis		
PI	Protease Inhibitors		
PKDL	Post kala-azar Dermal Leishmaniasis		
PMTCT	Prevention of mother-to-child transmission		
PPH	Post-Partum Haemorrhage		
PRN	As required		
PROM	Premature Rupture Of Membranes		
PSVT	Paroxysmal supra-ventricular tachycardia		
PTE	Pulmonary thrombo-embolism		
PTT	Placental trophoblastic tumour		
PVE	Prosthetic Valve Endocarditits		
QD	Once a day		
QID	Four times a day		
RA	Rheumatoid Arthritis		
RBC	Reduction in red blood cell		
RDT	Rapid Diagnostic Tests		
RUTF	Ready to use therapeutic feeding		
SBGM	Self-blood glucose monitoring		

SBP	Prophylaxis for spontaneous bacterial peritonitis
SSIs	Surgical site infections
STG	Standard Treatment Guideline
STI	Sexually transmitted infections
TID	Three times a day
VT	Ventricular Tachycardia
VTE	Venous thromboembolism
WBC	White blood cell count
WPW	Wolff-Parkinson-White

PREFACE

In a healthcare system where multiple treatment options are available, the development and implementation of standard treatment guidelines (STGs) is a crucial strategy for ensuring effective and safe use of medicines, containing health care costs, and preventing antimicrobial resistance.

STGs promote therapeutically effective and economic use of medicines at different levels of health facilities, as they give clear guidance and recommendations about the treatment and management of each clinical condition. When properly developed and implemented, treatment guidelines enhance rational medicine use and improve the quality of care. These guidelines provide up-to-date information relevant to the prevention, diagnosis and treatment of common diseases in Ethiopia which helps to achieve provision of quality care to patients.

These STGs provide greater consistency and standards of care, improve diagnostic accuracy, and promote effective and safe use of medicines, and serves as a basis for improving treatment outcomes. It is also important to supply chain managers in improving the predictability of demand, and provide a standardized basis for forecasting, ordering, and purchasing of medicines. Health policy makers, health insurance agencies and planners will benefit from these STGs as it serves as an effective way to contain the cost of treatment for both patients and the health sector.

This 3rd edition includes a package of evidence based information on diseases conditions, clinical features, methods of investigations, treatment options and referral to the next level of care. Special emphasis is given to primary healthcare so as to address important public health needs in the country. EFMHACA has officially approved this treatment guidelines to be used as a guide for prescribers, dispensers and other health care providers operating at the level of Primery Hospital. Accordingly, health care providers shall comply with these guidelines unless there is aproven and specific treatment need for a patient that is supported by adequate evidence.

Finally, I would like to take this opportunity to acknowledge USAID/SIAPS, EFMHACA regulatory standard team, Bethel Teaching General Hospital and participants of the consultative workshop for their huge contributions in the revision of these important guidelines.

Yehulu Denekew, Director General, EFMHACA, January 2014

INTRODUCTION

Irrational use of drugs has been one of the major problems in the Ethiopian health care system for a long time. Among the strategies devised to improve the situation, Medicine, Food and Healthcare Administration and Control Authority (FMHACA) of Ethiopia, was involved in the preparation and distribution of Standard Treatment Guidelines (STGs) for the different levels of health institutions in the country.

The 1st edition of the STGs was published in January 2004 after wide consultation with relevant stakeholders. There has been continuous demand since then for copies of the STGs, calling for several reprints and revision. The 2nd edition of the guidelines was published in 2010. The demand for these guidelines is increasing, perhaps because STGs are also being used as an alternative to fill the gap in reference materials.

Following the changes made to the national list of drugs and an increasing demand for incorporating new developments in diagnosis and treatment, it was found important to revise the 2nd edition of STGs.Accordingly, this edition of STGs was thoroughly revised by a panel of experts through contracting out to Bethel Teaching General Hospital with technical and financial support from USAID/SIAPS.

This third edition addresses common health problems in Ethiopia and it includes several new diseases as well as brief description of the diseases condition, clinical features, methods of investigation and non-pharmacologic and pharmacologic treatment options. Information on dosing, dosage forms, course of treatment, adverse reactions, contraindications and drug interactions are given for the first line and alternative drugs whenever applicable. Diseases have been classified into cardiovascular disorders, endocrine disorders, gastrointestinal tract and liver disorders, hematologic disorders, infectious diseases, kidney and genitourinary tract disorders, musculoskeletal disorders, neurological disorders, oncology, psychiatric disorders, respiratory disorders, emergency conditions, pediatric disorders, gynecology and obstetrics,

dermatological disorders, sexually transmitted infections, ophthalmological disorders and ear, nose and throat disorders.

EFMHACA believes that utmost care has been made by the panel of experts to ensure that the recommendations given are evidence-based. In addition, the draft STGs documents were reviewed in a national consultative workshop where relevant experts are involved. Above all, this document will undergo continuous improvement through the inputs of users including prescribers, dispensers, academia and researchers, supply chain managers, policy makers and other relevant stakeholders. Users are, therefore, encouraged to send their feedbacks, supporting it with scientific evidences, to the following address:

The Food, Medicine and Health Care Administration and Control Authority (FMHACA) of Ethiopia

Telephone: 011-5-524122 Fax: 251-115-521392

Free call line: 8482 P.O.Box 5681

Addis Ababa, Ethiopia

E-mail: regulatory@fmhaca.gov.et
Website: www.fmhaca.gov.et

CHAPTER I: GOOD PRESCRIBING AND DISPENSING PRACTICES

General

Rational use of medicines is a mechanism through which safe, effective and economic medication is provided. It is promoted through the collaborative efforts of prescribers, dispensers, patient and policymakers. Rational prescribing ensures adherence to treatment and protects medicine consumers from unnecessary adverse medicine reactions. The prescriber could be a physician, a nurse or health officer or any health professional authorized to prescribe. Rational dispensing, on the other hand, promotes the safe, effective and economic use of medicines. The dispenser could be a pharmacist, or pharmacy technician. Prior to prescribing or dispensing of any Medicines, the prescriber or dispenser should make sure that it is within his/her scope of practice.

Medicines should only be prescribed when necessary, and the benefit-risk ratio of administering the medicine should always be considered prior to prescribing and dispensing. Irrational prescribing leads to ineffective, unsafe and uneconomical treatment. Thus it is very important that steps are taken to promote rational medicine use in order to effectively promote the health of the public especially given limited resources. One way of promoting rational medicine use is throught the development and use of standard treatment guidelines.

Rational approaches to therapeutics requires careful evaluation of health problems and selecting appropriate therapeutic strategies. Making the right diagnosis is the cornerstone for choosing the right kinds of therapy. Based on the diagnosis, health workers may select more than one treatment and the patient should agree with the selected treatment. The treatment could be non-pharmacologic or pharmacologic. It is important to consider the total cost of treatment in the selection process. The process should also consider efficacy, safety and suitability. Medicine treatment should be individualized to the needs

of each patient as much as possible. The concept of good clinical practice has to be incorporated within rational prescribing

Prescription writing

A prescription is a written therapeutic transaction between the prescriber and dispenser. It is a written order by the prescriber to the dispenser on how the drug should be dispensed. It serves as a means of communication among the prescriber, dispenser and medicine consumer pertaining to treatment or prophylaxis.

A prescription should be written on a standard prescription blank legibly and clearly in ink and in generic names of the medicine(s).

A prescription should contain

- Name, address, age body weight of the medicine consumer and Date of the prescription;
- Diagnosis; Generic name, dosage form and strength and directions for use of the medcines. The pharmaceutical form (for example 'tablet', 'oral solution', 'eye ointment') should also be stated.
- The strength of the drug should be stated in standard units using abbreviations that are consistent with the Systéme Internationale (SI).
 'Microgram' and 'nanogram' should not, however, be abbreviated. Also,

'units' should not be abbreviated. Avoid decimals whenever possible. If unavoidable, a zero should be written infront of the decimal point.

- prescriber's name, signature and address.
- See Annex 17 for Standard Prescription form

Good Dispesing Practice

Good dispensing practices ensure that the correct medicine is delivered to the right patient, in the required dosage and quantities, with clear information, and in package that maintains an acceptable potency and quality of the medicine.

Dispensing includes all the activities that occur between the times the prescription or oral request of the patient or care provider is presented and the medicine is issued. This process may take place in health institutions and community drug retail outlets. It is often carried out by pharmacy professionals. No matter where dispensing takes place or who does it, any error or failure in the dispensing process can seriously affect the care of the patient mainly with health and economic consequences. Therefore, the dispenser plays a crucial role in the therapeutic process. The quality of dispensing may be determined by the training and supervision the dispenser has received. During medcines dispensing and counseling the information mentioned under prescribing above. the "Medicines Good Dispensing Practices" manual 2012 edition and also medicines dispensing and counseling guides are good resources to use. Finally, an application of the professional code of ethics by pharmacy professionals is an important issue that needs due consideration particularly with respect to confidentiality of patient data, withholding therapeutic interventions and varying cost of medicines.

Patient adherence

Patient compliance is the extent to which the patient follows the prescribed drug regime, while adherence is participation of patients in their care plan resulting in understanding, consent and partnership with the provider. There are different factors which contribute to patients' non-adherence. These factors include:

- nature of treatment, which in turn depends on the
 - complexity of the regime (more frequency of administration and more number of drugs prescribed)
 - adverse effects
- characteristics of the patient such as
 - forgetfulness about taking the medication
 - unable to finish because of feeling better
 - lack of understanding of the prescription
 - fear of dependence
 - social or physical problems to go to pharmacy

- unable to pay prescription charges
- inconvenience of taking medicines everyday
- type of illness like schizophrenia
- health care system (long waiting times, uncaring staff, uncomfortable environment, exhausted drug supply, inaccessibility of the health institution)
- behavior of prescribers and dispensors
 - not winning confidence of patients
 - irrational prescribing and dispensing
 - giving inadequate information on the treatment
 - poor attitude to patients
 - negligence
 - poor perception to team work

Patient adherence can be improved by

- supervising medicine administration
- simplifying therapeutic regime
- educating patients on the importance of adhering to the prescribed medication
- improving the attitudesa of prescribers and dispensors

Adverse drug/Medicines reactions

Adverse drug/medicine reactions (ADRs) are noxious unwanted effects that occur at the rapeutic doses. They could be mild (where no intervention is required), moderate (where switch to another drug is necessary), severe (where antidote should be employed to alleviate the situation), or lethal. They could also be predicted (extensions of pharmacological effects) or unpredicted (bizarre reactions which are not expected in all patients taking the drug, such as hypersensitivity and idiosyncratic reaction). ADRs are different from toxic reactions for the later occur at doses higher than therapeutics. They are also different from side effects as the latter have broad concept, i.e., include both beneficial and all unwanted effects which may not necessarily be noxious. The two extreme age groups, i.e., pediatric and geriatric patients are more susceptible to ADRs due to physiological and pathological factors.

Special precaution should be taken for coexisting illnesses, such as kidney and liver disease, as they could contribute to ADRs development

Monitoring ADRs

Pre-marketing clinical trials cannot be exhaustive as far as detection of all ADRs is concerned due to

- Recruitment of small population(< 2500 patients)
- The remote chance of low incidence reactions to be picked up before marketing
- Shorter duration of assessment
- Exclusion of patients who may take the medicine after marketing

Only the most common ADRs could be detected during pre-marketing trials. It is, therefore, important to devise methods for quick detecting ADRs. This could be carried out by post-marketing surveillance, i.e., ADRs monitoring. Hence, all health professionals have the responsibility to report any unique ADR observed to Food, Medicine and Health Care Control and Administration Agency (FMHACA).

Drug /Medicine Interactions

Though some drug/medicine interactions could be beneficial most are harmful. Hence it is always important to note the possible medicine interactions prior to concomitant medicine/food or drink administration.

Drug/medicine interactions could occur at different levels including:

- Pharmaceutics, which are physicochemical interactions in an IV infusion or in the same solution.
- Pharmacokinetics, which may take place at the level of absorption, distribution, biotransformation or excretion.
- Pharmacodynamics, which could occur directly at receptor level or indirectly where a medicine induced disease alters the response to another medicine.

Drug/medicine interactions could be additive (the effect is simple algebraic sum), synergism (the total effect is more than the algebraic sum) potentiation (the effect of one drug increases by the presence of another medicines), or

antagonism (the effect of the agonist is blocked by the antagonist when given together). Medicne interactions are some of the most common causes of adverse reactions. As medicine reactions could also occur between a medicine and food or a medicine and drink. We should always inform our patients the type of food or drink which they have to avoid while taking the drug.

Prescribing for pregnant women

The kinetics of a medicine is altered during pregnancy. The rate of absorption decreases, while volume of distribution, metabolism and glomerular filtration rate increase during pregnancy. The embryonic period, where, organogesis takes place, is the most susceptible period of pregnancy to drug effects. Administration of drugs, except those proved safe, in the first trimester, is therefore not generally recommended. It is advisable not to prescribe any medicine during at any stage of pregnancy if possible. This, however, should not preclude the importance of prescribing in life threatening conditions of the mother. Prior to prescribing any drug for pregnant women, the benefit risk ratio of prescribing should be considered.

Prescribing for breast feeding women

Most medicines administered are detectable in breast milk. The concentration, however, is low. If the woman has to take the drug and the drug is relatively safe, she should optimally take it 30-60 minutes after breast feeding and 3-4

Hours before the next feeding in order to allow time for many drugs to be cleared from the mother's blood, and the concentration in breast milk to be relatively low. Medicines for which no data are available on safety during lactation should be avoided or breast feeding discontinued while they are being given. Most antibiotics taken by breast feeding mothers can be detected in breast milk. e.g., tetracycline and chloramphenichol. Most sedative hypnotics achieve concentrations in breast milk. Opioids also achieve concentrations in breast milk. Antineoplastic medicines are contraindicated in breast feeding. So it is worth noting not to prescribe medicines secreted in milk to the nursing mother.

Prescribing for infants/children

Physiologic processes that influence drug kinetics in the infant change significantly in the first year of life, specially the first few months, while there is no much difference in the dynamics. All the four parameters of kinetics are, therefore, affected in children: Gastric acid secretion begins soon after birth and increases gradually over several hours in full term infants. In premature infants, however, the secretion is slower, with the highest concentration occurring on the fourth day. So medicines, which are partially or totally inactivated by the low pH of gastric content should not be administered orally. GI enzymes are lower in the neonates than in adults. Neonates have less bile acids so that absorption of lipid soluble drugs is less. Gastric emptying time is prolonged in the first day. So medicines, which are absorbed primarily in the stomach, may be absorbed more completely. For drugs absorbed in the small intestine, therapeutic effects may be delayed. Peristalsis in neonates is slow. More medicines, therefore, will get absorbed from the small intestine. The volume of distribution is low in children, and drug metabolizing enzymes are not well developed. The glomerular filtration rate is slower than adults (30-40%). So the clearance of drugs is slower in children than in adults. This definitely demands for dose adjustment in this age group.

Dose adjustment in pediatrics:

The most reliable pediatric doses are those given by the manufacturer. If no such information is given, the dose can be calculated using formulae based on age, weight or surface area. Calculations of doses based on age or weight are conservative and tend to underestimate the required dose. Doses based on surface area are more likely to be adequate. This is available in form of chart. Pediatric doses can be calculated as follow:

Dose calculations based on Age:

Dose = adult dose x age (years)

Age + 12

Dose calculations based on weight

Dose = adult dose x weight (kg)

70

Prescribing for elderly patients

There is no major alteration in medicine absorption in elderly patients. However, Conditions associated with age may alter the rate of absorption of some medicines. Such conditions include altered nutritional habits, alteration in gastric emptying, which is often slower and the concurrent administration of other medicines. Aged people have reduced lean body mass, reduced body water and an increase in fat as a percentage of body mass. There is a decrease in serum albumin, and the ratio of bound to free drug is significantly changed. Phase I reactions are more affected in elderly patients than phase II. There is a decline with age of the liver's ability to recover from injury. Diseases that affect hepatic function like congestive cardiac failure are more common in the elderly. Severe nutritional deficiencies in the elderly may impair hepatic function. Creatinine clearance declines in the elderly leading to marked prolongation of the half life of drugs. The increased incidence of active pulmonary disease in the elderly could compromise drug elimination through exhalation.

There is also a change in the sensitivities of receptors to medicines in aged people. The quality and quantity of life in elderly patients can be improved by careful use of drugs. Adherence to the doses is absolutely required in these patients. Unfortunately patient nonadherence in the elderly is common because of forgetfulness, confusion, deliberate skipping of doses and physical disabilities as in the case of tremors which cause errors in measurement by spoon.

Prescribing in renal failure

Many drugs are excreted through the kidneys and impairment of renal function alters the excretion of these medicines and may result in renal as well as non-renal toxicity unless doses are adjusted on the basis of the degree of renal impairment. There are two principal pathways for drug excretion by the kidneys; glomerular filtration and tubular excretion. Glomerular filtration plays a major role in the excretion of small, non-protein bound molecules whereas protein bound molecules that are excreted in urine are eliminated by secretion into the proximal tubules.

For dose adjustment in renal failure it may occasionally be necessary to measure drug levels and adjust doses accordingly, but generally doses are adjusted on the basis of the estimated glomerular filtration rate (GFR). Among the various formulae used to estimate the GFR from the serum creatinine, the Cockcroft Gault formula is the easiest to use although not the most accurate one. The GFR in the C&G formula is calculated as follows:

GFR= (140-age)×lean body weight(kg)

Serum creatinine (mg/dl) ×72

The value is multiplied by 0.85 in women to account for the smaller muscle mass.

Factors that potentiate renal dysfunction and contribute to the nephrotoxic potential of renally excreted medicines include;

- a. intravascular volume depletion either due to external losses or fluid sequestration (as in ascites or edema)
- concomitant use of 2 or more nephrotoxic agents e.g. Nonsteroidal antiinflammatory agents, aminoglycosides, radio contrast agents.

In general in the presence of renal impairment to avoid worsening of renal dysfunction

- Avoid potentially nephrotoxic drugs and use alternative drugs that are excreted through other routes.
- 2. If there are no alternative drugs to use calculate the GFR and adjust the dose on the basis of the estimated GFR. (Many textbooks, formularies have tables showing dose adjustment on the basis of estimated GFR). Dose adjustment may be accomplished in three different ways i) Decreasing each individual dose and maintaining the same dose frequency ii) Maintaining the same individual dose but administering each dose less frequently and iii) Modifying both individual doses and the frequency of administration, which is a combination method.
- 3. Avoid concomitant use of 2 or more potentially nephrotoxic agents.
- 4. Insure that the patient is adequately hydrated.

- If the patient is on dialysis check if the drug is eliminated by the specific dialysis modality and consider administering a supplemental dose at the end of the dialysis session.
- 6. Serially monitor kidney function.

Prescribing in liver disease

The liver is a site for the metabolism and elimination of many medicines but it is only in severe liver disease that changes in medicines metabolism occur. Unfortunately, routine determination of liver enzymes and other tests of liver function cannot predict the extent to which the metabolism of a certain drug may be impaired in an individual patient.

In general terms drug prescription should be kept to a minimum in all patients with severe liver disease as liver disease may alter the response to drugs in several ways. Major problems occur in patients with advanced liver disease who have ascites, jaundice or hepatic encephalopathy.

The hypoproteinemia in patients with severe liver disease is associated with reduced protein binding and with increased toxicity when highly protein bound drugs are used.

One must exercise caution in the use of some drugs like sedatives, opioids and diuretics which may precipitate hepatic encephalopathy in patients with advanced liver disease.

It is always advisable to consult tables in standard textbooks or drug formularies before prescribing drugs for patients with severe liver disease.

Prescribing and pain management in Palliative Care

Palliative care is the active total care of patients whose disease is not responsive to curative treatment. Focus lies in four main domains: 1) control of pain and other physical symptoms; 2) mental or psychological symptoms; 3) social needs; and 4) spiritual needs. This requires careful assessment of the symptoms and needs of the patient by a multidisciplinary team. The family should be included in the care of terminally ill patients.

OR

Enoxaparin 40mg, SC, daily

(For ADRs, C/ls, P/Cs, D/ls and dosage forms, see page 53)

- D. Pharmacologic treatment of chronic heart failure with depressed lef ventricular systolic function-
 - Diuretics
 - ACEI or ARBS

+/- Spironolactone and Digoxin

- Beta blockers

Table 5- Drugs for the treatment of Chronic Systolic Heart failure

Drugs	Drugs Initial dose Maximum de		ose	Comments		
Diuretics						
Furosemide	20-40 mg qd or	400 mg/d	Dose	e depends on fluid		
	bid		overl			
			Follo	wfor hypokalemia		
Angiotensin-Conver	ting Enzyme Inhibi	tors (ACEI)				
Captopril	6.25 mg tid	50 mg tid	Incre	ase dose to target		
Enalapril	2.5 mg bid	10 mg bid	gradi	,		
Lisinopril	2.5–5 mg qd	20–35 mg qd	K ⁺	w RFT and serum		
Angiotensin Recept	or Blockers(ARBs)-	alternative to	ACEI			
Valsartan	40 mg bid	160 mg bid	Incre	ase dose to target		
Candesartan	4 mg qd	32 mg qd	gradı	ually		
Losartan	12.5 mg qd	50 mg qd	Follo	w RFT and serumK⁺		
			Do			
			ACE			
Beta Blockers						
Carvedilol	3.125 mg bid	25–50 mg	- Sta	art when patient is		
		bid	stab	le		
Metoprolol	12.5-25 mg qd	Target dose	-	Increase dose		
succinate CR	d	200 mg qd	grad	ually(<u>></u> 2wks)		
Additional Therap	ies					
Spironolactone	12.5-25 mg qd	25–50 mg	To b	e added if HF		
		qd	rema	ains poorly		
Digoxin	0.125 mg gd	0.25 mg gd	cont	rolled despite		
3.	3 1	3 1		nal therapy with		
				above class of		
			drug			
4			arug	•		

4. Hypertension

Hypertension is a state of elevated systemic blood pressure that causes marked increment of cardiovascular risk. It is one of the major but preventable risk factors of coronary artery disease, hemorrhagic and ischemic stroke, heart failure and chronic kidney disease. In 90-95% of cases, the cause is unknown

and it is called essential hypertension. Secondary hypertension refers to hypertension caused by other systemic illness as part of their manifestation. The common causes are renal parenchymal disease (e.g. glomerulonephritis, chronic kidney disease of any cause), renovascular disease (renal artery stenosis), endocrine (e.g. Cushing syndrome, primary hyperaldosteronism, Pheochromocytoma), coarctation of the aorta, obstructive sleep apnea and drug induced (e.g. corticosteroid, oral contraceptive pills).

Although the risk of cardiovascular and renal disease continuously rises over the entire range of blood pressure; based on the level of blood of blood pressure hypertension is defined a systolic blood pressure \geq 140mmHg and/or diastolic blood pressure \geq 90mmHg.

Clinical features

- Hypertension is generally ASYMPTOMATIC.
- Clinical evaluation (history and physical examination) should focus on proper blood pressure measurement, looking for other cardiovascular risk factors(Diabetes Mellitus, Dyslipidemia, Obesity, Smoking and family history of coronary heart disease), looking for evidence of end organ damage and searching for possible secondary causes.

Table 6. Category of blood pressure according to the USA Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC-7)

	Blood pressure in mm Hg				
Category	Systolic		Diastolic		
Normal	<120	AND	<80		
Prehypertension	120-139	OR	80-89		
Hypertension	≥140	OR	≥90		

Table 7 . Category of stage of hypertension according to the USA Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC-7)

Stage of hypertension	Systolic		Diastolic
Stage1	140-159	0	R 90-99
Stage 2	≥160	Ol	R ≥100

- **N.B** These definitions apply to adults on no antihypertensive treatment and who are not acutely ill. If there is a disparity in the category between the systolic and diastolic pressures, the higher value determines the severity of hypertension.
- 1) Hypertensive Emergencies- are acute, life-threatening, and usually associated with marked increases in blood pressure (BP), generally ≥180/120 mmHg .These are situations that require immediate (within minutes) blood pressure reduction to prevent or limit target organ damage. The conditions include ypertensive encephalopathy, intracranial hemorrhage, unstable angina, acute myocardial infarction, acute kidney injury, pulmonary edema and dissecting aortic aneurysm, and eclampsia.
- 2) Hypertensive Urgency- is a situation in which there is asymptomatic severe hypertension with no target organ damage. The goal of management is to reduce the blood pressure to ≤160/100 mmHg over several hours to days, not rapidly. This is based on the adverse effects observed with faster correction and/or lower achieved blood pressure.

Investigations

- Urinalvsis
- Blood chemistry potassium, sodium, creatinine/estimated glomerular filtration rate
- Fasting blood glucose
- Fasting total cholesterol, high-density lipoprotein (HDL) cholesterol, lowdensity lipoprotein (LDL) cholesterol, triglycerides
- Standard 12 lead electrocardiogram (ECG)

Treatment Objectives

- Detection and management of other cardiovascular risk factors
- Detection and management of target organ damage

- Prevention of target organ damage
- Decrease the side effects of medications
- Achieve target blood pressure (< 140/90mmHg, in patients having diabetes with proteinuria and chronic kidney disease < 130/80 mmHg)

Non pharmacologic

- Smoking cessation: Complete cessation of smoking
- Physical activity: At least 30 minutes of moderate intensity activity 5-7 days per week
- Weight reduction: BMI 18-24 kg/m2, waist circumference < 102 men, < 88 cm women
- Dietary recommendations: emphasize fruits, vegetables, low-fat dairy products, fibre, whole grains, and protein sources that are reduced in saturated fats and cholesterol
- Reduce salt intake: about1 tsp of table salt. Do not forget hidden salt in home prepared spices.
- Alcohol consumption: limited to two drinks or less per day.(One standard drink)
 - 1 bottle (341 mL) of 5% beer or 1 glass (150 mL) of 12% wine or, 1.5
 oz (45 mL) of 40% spirit

Pharmacologic

- The first-line drugs are roughly equally effective as mono therapy although there is interpatient variability.
- Beta blockers are not considered as first line in the absence of a compelling indication.
- Start with a single agent among the first lines, two drugs can be started at the beginning in stage 2 hypertension if the BP is hiher than 20/10 mmHg from the target.
- If BP target is not achieved by a single agent add a second agent rather than increasing the dose of the first drug to maximum dose.
- If two drug combinations are started, start with a long acting ACEI (e.g Lisinopril) and long acting dihydropyridine calcium channel blocker(e.g Amlodipine)

Fig1: Algorithm for the Treatment of Essential Algorithm

Hypertension detected with BP> 140/90 mmHg, ruling out exogenous factors If BP is ≥ 180/120mmHg start urgent treatment If BP is not severly elevated ,confirm the diagnosis with three separate records Diagnosis of hypertension confimed -Assess for end organ damage, other cardiovascular risk factors(e.g. DM, yslipidemia, smoking) -If there is end oragn damage or major cardiovascular risk factors- start drug treatment and life style intervention together irrespective of BP level -If BP is > 160/100 start drug treatment along with life style management BP 140 -159/90-99 with no end ordan damage and no other cadrdiovascular risk factors Life style management with regular follow up of BP for about three months Not at Goal Blood Pressure (<140/90 mmHg) (<130/80 mmHg diabetes or chronic kidney disease) Start drug treatment Look for compelling indications No compelling Compelling indications Start preferably with long acting dihydropyridine See table 4 Calcium channel blockers(DHCCB) e.g Amlodipine If BP is >160/100 start 2 drugs (DHCCB +AECI) Not at Goal BP -If on single agent DHCCB, add ACEI and vice versa - If already on DHCCB + CCB ,add a Thiazide Not at Goal BP with DHCCB+CCB+TZD Consider a 4th line agent: Beta-blocker, Spironolactone, Central agent OR refer to specialist

Non -Emergency conditions

First line (in the absence of compelling indications)

Calcium channel blockers - Amlodipine, Nifedipine (extended or slow release),

Felodipine

ACE inhibitors - Lisinopril, Enalapril and captopril

Thiazide diuretics- Hydrochlorothiazide

Angiotensin receptor blockers (ARBs) – Candesartan, Valsartan, Losartan

(For dose regimens, ADRs, C/Is, P/Cs, D/Is and dosage forms, see page 34)

Alternatives

Beta blockers- Atenolol, Metoprolol, Carvedilol, propranolol

Central alpha-2 agonist - methyldopa

(For dose regimens, ADRs, C/Is, P/Cs, D/Is and dosage forms, see page35)

Table 8- Dose, frequency and ADRs of antihypertensive medications available

Class	Drug	Dose range (mg/d)	Frequency (Per day)	Common ADRs
	Enalapril	5 - 40	1-2	-Dry cough,
ACEI	Lisinopril	10 - 40	1	hyperkalemia, AKI,
	Captopril	25 -100	2-3	angioedema
Thiazide diuretics	Hydrochlorot hiazide	12.5 - 25	1	Frequent urination, hyperglycemia, hyperlipidemia, hyperuricemia
	Amlodipine	2.5 - 10	1	Pedal edema and
Dihydrop yrdine CCB	Nifedipine (extended release)	20 - 120	1-2	headache
	Felodipine	2.5 - 20	1	
	Atenolol	25 - 100	1	Fatigue,
Beta	Propranolol	40 - 160	2-3	bronchospasm,bradyc
blockers	Metoprolol succinate	25 - 100	1	ardia, AV block hyperglycemia, sexual
	Carvedilol	12.5 - 50	2	dysfunction
ARBS	Candesartan	8 -32	1	Hyperkalemia and AKI
	Valsartan	80- 320	1 - 2	
	Losartan	25 - 100	1 - 2	

Class	Drug	Dose range (mg/d)	Frequency (Per day)	Common ADRs
Non- dihydrop	Verapamil	120–360	1-2	Constipation (verapamil), headache
yrdine CCB	Diltiazem	180-420	1	(diltiazem), bradyacrdia
Central α agonists	Methyl dopa	250 - 1000	2	Sedation, dry mouth, rebound hypertension, sexual dysfunction

Table 9- Compelling indication/co-morbidities in hypertension treatment

Compelling condition	First line	Second line	
Coronary heart disease	ACE inhibitors/ARB	Calcium channel	
	Beta blockers	blocker	
Heart failure	ACE inhibitor/ARB	Diuretics	
	Metoprolol/Carvedilol		
Diabetes with proteinuria	ACE inhibitor/ARB	Thiazide	
		Calcium channel	
		blockers	
Left ventricular	ACE inhibitor/ARB	Thiazide	
hypertrophy			
Chronic kidney disease	ACE inhibitor/ARB	Loop diuretics,	
		cacium channel	
		blocker	

1. Treatment of Hypertensive Emergencies:

Optimal therapy varies with the type of hypertensive emergency. Hydralazine, 5-10 mg initial dose, repeated every 20 to 30 minutes (with maximum dose of 20 mg) should be given until the mean arterial blood pressure is reduced by 25% (within minutes to 2 hours), then towards 160/100 mm Hg within 2-6 hours.

2. Hypertensive Urgency

 For previously treated patients - adjust existing medication regimen, or reinstituting their medications (if nonadherent).

- For previously untreated patients start either a low dose of a calcium channel blocker (Nifedipine slow release 30) or ACE inhibitor (captopril or Enalapril) or Beta blocker.
- Furosemide 20 -40mg (PO or IV) can be added to the above agents
- If patient is reliable follow up can be made every one to two day. If not reliable admit.
- Avoid rapid drop in blood pressure

Table 10. Drugs used in the treatment of hypertensive emergency

Drug	Route	Initial dose	Dose Range	Onset peak Effects	Duration
Nitroprusside	I.V	0.5 μg/kg /min	0.5 to 10 μg/kg /min	1 to 2 min	2 to 3 min
Nitroglycerin	IV	5 μg/min IV infusion	5–100 µg/min IV infusion	2–5 min	5–10 min
Hydralazine	I.V	5-10 mg	5 to 20 mg	5 to 15min	2 to 6 hr
Captopril	P.O	6.25 to 12 .5 mg	12.5 - 50 mg , TID	30 to 90 min	4 to 6 hr

5. Ischaemic Heart Disease

Clinically Ischemic Heart Disease comprises of stable angina pectoris, acute coronary syndromes and ischemic cardiomyopathy.

Stable angina pectoris

Stable angina pectoris refers to recurrent characteristic/atypical chest pain induced by physical activity or emotional stress and relieved by rest or nitrates. Atherosclerosis with narrowing of the coronary blood vessels of the vessels leading to reduction in blood supply to the myocardium is the cause. Risk factors of stable angina are that of atherosclerotic vascular disease, the major risk factors include diabetes mellitus, hypertension, cigarette smoking, dyslipidemia, obesity, a family history of ischemic heart disease or sudden death, old age, male gender and elevated markers of inflammation such as Creactive protein.