Congress of the Pan African Society of Cardiology
3-7 October 2015
Mauritius

Bioresorbable Vascular Scaffold (BVS) System

Communicating the value of an Innovative Therapy for Coronary Artery Disease

Dr. Aniff YEAROO
• Presentations are intended for educational purposes only and do not replace independent professional judgement.

• I do not have any potential conflict of interest.
C.A.D

A LEADING CAUSE OF MORBIDITY AND MORTALITY
Coronary artery disease is the worldwide leading cause of mortality and a major cause of morbidity

- Coronary artery disease (CAD) is the worldwide leading cause of mortality and a major cause of morbidity
 - With an aging population and increasing prevalence of other risk factors, the health and economic burden of CAD will increase

- Percutaneous coronary intervention (PCI) with drug-eluting stents (DES) is a minimally invasive and highly effective treatment for CAD
 - PCI with stenting is the treatment of choice for key CAD patient groups; it offers benefits over medical and surgical therapies and is cost-effective
The prevalence of CAD is expected to rise with an aging population.

Estimated population aged 60 or over from 1950–2050

- Global
- Developing regions
- Developed regions

Predictions:

2020
- 82 million healthy life years lost globally (up 74% vs. 1990)

2030
- US healthcare spending on CAD >$239 billion (up 100% vs. 2013)

Disclaimer: Caution: This product is intended for use by or under the direction of a physician. Prior to use, it is important to read the package insert thoroughly for Instructions for Use, Warnings and Potential Complications associated with use of this device. Information contained herein for distribution outside the U.S. only. Absorb BVS is currently CE marked. Please check the regulatory status of the device before distribution in areas where CE marking is not the regulation in force.
Current treatment options for CAD can be broadly defined as medical or surgical

- **Medical treatments** are pharmaceutical agents, including anti-ischemic agents, antiplatelet therapy, anticoagulants and statins

- **Surgical treatments** aim to provide coronary revascularization – the primary procedures for this are:

 Coronary artery bypass grafting (CABG)
 - Re-establishes blood flow to heart by bypassing blocked regions of artery using graft of alternative artery/vein of patient1

 Percutaneous coronary intervention (PCI)
 - Re-establishes blood flow to heart by opening up blocked artery2, using catheter-based procedures3, including:
 - **Stenting** – using either BMS or DES
 - **Balloon angioplasty** (percutaneous transluminal coronary angioplasty – PTCA) which can also include the use of:
 - **Drug-eluting/coated balloons** - local delivery of drug on non-stent based platforms

BMS=bare-metal stent; CAD=coronary artery disease; DES=drug-eluting stent.
PCI with stenting is the treatment of choice for a wide range of CAD patients

Revascularization procedures per quarter 2001–2008 in the US

1. Epstein AJ et al. JAMA 2011;305(17):1769–78. BMS=Bare metal stent; CAGB=coronary artery bypass graft. CAD=coronary artery disease; DES=drug eluting stent; PCI=percutaneous coronary intervention; PTCA=percutaneous transluminal coronary angioplasty.

Disclaimer: Caution: This product is intended for use by or under the direction of a physician. Prior to use, it is important to read the package insert thoroughly for Instructions for Use, Warnings and Potential Complications associated with use of this device. Information contained herein for distribution outside the U.S. only. Absorb BVS is currently CE marked. Please check the regulatory status of the device before distribution in areas where CE marking is not the regulation in force.

©2015 Abbott. All rights reserved. AP2037222 OUS Rev. D
Despite improvements in PCI, there is evidence of unmet need with current treatment options

There is still room for improvement in clinical outcomes for PCI patients

2. SPIRIT III: Ischemia-driven TLR through 5 years. Stone GW, TCT 2011.

Disclaimer: Caution: This product is intended for use by or under the direction of a physician. Prior to use, it is important to read the package insert thoroughly for Instructions for Use, Warnings and Potential Complications associated with use of this device. Information contained herein for distribution outside the U.S. only. Absorb BVS is currently CE marked. Please check the regulatory status of the device before distribution in areas where CE marking is not the regulation in force.
PCI and DES have revolutionized cardiovascular care; Absorb represents the next major advancement

1977
Andreas Gruentzig performs the first PTCA in Zurich, Switzerland

1988
Julio Palmaz and Richard Schatz develop a stainless steel stent for coronary applications

2001 - 2003
Drug-eluting stents are introduced to the European and U.S. markets

2010*
First Absorb Biodegradable Vascular Scaffold (BVS) approved for use in Europe and Asia-Pacific

- Continuous PCI technology advancements have significantly improved clinical outcomes for CAD and expanded patient access to less invasive treatment options
- Absorb represents a new approach that provides the safety and efficacy of a best-in-class DES while improving long-term benefits with lower revascularization and post-PCI angina rates

*Additional sizes received CE Mark in 2012 and 2014.
‘Caged’ Vessel

Delayed Healing \rightarrow Stent Thrombosis?

Benign Neointima

Late Acquired Malapposition \rightarrow Stent Thrombosis?

Neo-Atheroma \rightarrow Stent Thrombosis?

In-Stent Restenosis (NIH)

* uncovered struts

1Virmani, R. CIT 2010
The clinical need for a Bioresorbable Vascular Scaffold

<table>
<thead>
<tr>
<th>Rationale</th>
<th>Vessel scaffolding is only needed transiently*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision</td>
<td>As Safe and Effective as a Best in Class DES with Unique Benefits</td>
</tr>
<tr>
<td>Potential Benefits</td>
<td></td>
</tr>
<tr>
<td>- Reduction in post-PCI angina leading to fewer revascularizations</td>
<td></td>
</tr>
<tr>
<td>- Restoration of the vessel to a more natural state, capable of natural vascular function</td>
<td></td>
</tr>
<tr>
<td>- Vessels remain free for future treatment options**</td>
<td></td>
</tr>
<tr>
<td>- Allows for use of non-invasive imaging techniques (CCTA/MSCT)</td>
<td></td>
</tr>
<tr>
<td>- Improve patient quality of life</td>
<td></td>
</tr>
</tbody>
</table>

*Seruys PW, et al., Circulation 1988; 77: 361. Serial study suggesting vessels stabilize 3-4 months following PTCA.
**Small platinum markers at scaffold edges remain for fluoroscopic landmarking.
CCTA: Absorb vs. permanent implant
Vascular Reparative Therapy: Potential for Improved Long-Term Outcomes

Could Absence of an Implant Reduce Long-Term Events?

Cumulative Rates of Target Lesion Revascularization

- The goal of bioresorbable vascular scaffolds is to achieve the early benefits seen with DES, but improve on long-term outcomes by eliminating the implant

2Adapted from Stone, GW, TCT 2011 (dotted line represents projection)
3Data on file at Abbott Vascular; adapted from ABSORB Cohort B and EXTEND data (dotted line represents projection)
Bioresorbable Vascular Scaffold (BRS): The ideal of leaving nothing behind*

Data and images on file at Abbott Vascular. Illustrations are artist renditions; not drawn to scale. Cohort B OCT images - courtesy of RJ van Geuns, Erasmus Medical Center, Netherlands. Image after implantation is with Cohort B device. Small platinum markers at scaffold edges remain for fluoroscopic landmarking.

Disclaimer: Caution: This product is intended for use by or under the direction of a physician. Prior to use, it is important to read the package insert thoroughly for Instructions for Use, Warnings and Potential Complications associated with use of this device. Information contained herein for distribution outside the U.S. only. Absorb BVS is currently CE marked. Please check the regulatory status of the device before distribution in areas where CE marking is not the regulation in force.
Absorb Bioresorbable Vascular Scaffold (BVS) System Design Elements

Bioresorbable Scaffold
- Poly(L-lactide) (PLLA)
- Based on proven MULTI-LINK pattern
- Naturally resorbed, fully metabolized*

Bioresorbable Coating
- Poly(D,L-lactide) (PDLLA)
- Naturally resorbed, fully metabolized

Everolimus
- Similar dose density and release rate profile to XIENCE V

XIENCE V Delivery System
- World-class deliverability

*Small platinum markers at scaffold edges remain for fluoroscopic landmarking.

Disclaimer: Caution: This product is intended for use by or under the direction of a physician. Prior to use, it is important to read the package insert thoroughly for Instructions for Use, Warnings and Potential Complications associated with use of this device. Information contained herein for distribution outside the U.S. only. Absorb BVS is currently CE marked. Please check the regulatory status of the device before distribution in areas where CE marking is not the regulation in force.

©2015 Abbott. All rights reserved. AP2037323-OUS Rev. D
Absorb is designed to work in three phases to deliver Vascular Reparative Therapy

- **Revascularize**
 - Restores blood flow like a best-in-class DES, XIENCE

- **Restore**
 - Preliminary evidence of natural vessel function may improve long-term outcomes

- **Resorb**
 - Resorbs leaving no scaffold behind *

*Small platinum markers at scaffold edges remain for fluoroscopic landmarking. Porcine coronary artery model images. For Revascularize and Restore, the images are with Cohort B device. For Resorb, the image is with Cohort A device.

Disclaimer: Caution: This product is intended for use by or under the direction of a physician. Prior to use, it is important to read the package insert thoroughly for Instructions for Use, Warnings and Potential Complications associated with use of this device. Information contained herein for distribution outside the U.S. only. Absorb BVS is currently CE marked. Please check the regulatory status of the device before distribution in areas where CE marking is not the regulation in force.
CASES FROM FORTIS CLINIQUE DARNE
TABLE I. – Baseline characteristics of patients treated with BVS.

BVS: bioresorbable vascular scaffold; CABG: coronary artery bypass graft; MI: myocardial infarction; LVEF: left ventricular ejection fraction; PCI: percutaneous coronary intervention.

September 2013 – October 2014

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Treated with BVS (N = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>55</td>
</tr>
<tr>
<td>Male</td>
<td>92%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>15/40 – 37.5%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>10/40 – 25%</td>
</tr>
<tr>
<td>Insulin</td>
<td>0</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>15/40 – 37.5%</td>
</tr>
<tr>
<td>Current smoker</td>
<td>12/40 – 30%</td>
</tr>
<tr>
<td>Family history</td>
<td>10/40 – 25%</td>
</tr>
<tr>
<td>Previous M.I</td>
<td>7/40 – 17.5%</td>
</tr>
<tr>
<td>Previous PCI</td>
<td>5/40 – 12.5%</td>
</tr>
<tr>
<td>Previous CABG surgery</td>
<td>3/40 – 7.5%</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>55%</td>
</tr>
<tr>
<td>Stable angina</td>
<td>22/40 – 55%</td>
</tr>
<tr>
<td>Triple vessel disease</td>
<td>9/40 – 22.5%</td>
</tr>
</tbody>
</table>
Lesion characteristics | Lesions treated with BVS (N = 46)
---|---
Vessels treated
LMS | 0
LAD | 18/46 – 39.1%
Cx | 9/46 – 19.5%
RCA | 13/46 – 28.2%
Lesion type
A | 40%
B1 | 20%
B2 | 20%
C | 20%
Bifurcations | 3/46 – 6.5%
Calcified lesions | 8/46 – 17.3%
CTO | 0
In-stent restenosis | 3/46 – 6.5%

TABLE II. – Baseline characteristics of lesions treated with BVS.
BVS: bioresorbable vascular scaffold; CTO: chronic total occlusion; LAD: left anterior descending; LMS: left main stem; Cx: circumflex; RCA: right coronary artery.
<table>
<thead>
<tr>
<th>Procedural characteristics</th>
<th>Lesions treated with BVS (N = 46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predilatation</td>
<td>46/46 - 100%</td>
</tr>
<tr>
<td>Access Radial</td>
<td>36/40 – 90%</td>
</tr>
<tr>
<td>Post dilatation</td>
<td>39/46 – 84.7%</td>
</tr>
<tr>
<td>Max balloon size, mm</td>
<td>0.25mm above stent size</td>
</tr>
<tr>
<td>Max inflation pressure, atm</td>
<td>18 ATM</td>
</tr>
<tr>
<td>IVUS</td>
<td>0</td>
</tr>
<tr>
<td>OCT</td>
<td>0</td>
</tr>
<tr>
<td>Number of BVS per patient</td>
<td>48/40 – 1.2%</td>
</tr>
<tr>
<td>Number of BVS per lesion</td>
<td>48/46 – 1.04%</td>
</tr>
<tr>
<td>BVS diameter, mm</td>
<td>2.5 - 10</td>
</tr>
<tr>
<td></td>
<td>3 - 26</td>
</tr>
<tr>
<td></td>
<td>3.5 - 12</td>
</tr>
<tr>
<td>Total BVS length, mm</td>
<td>18 - 16</td>
</tr>
<tr>
<td></td>
<td>28 - 32</td>
</tr>
</tbody>
</table>

BVS: bioresorbable vascular scaffold; FKBI: final kissing balloon inflation; IVUS: intravascular ultrasound; OCT: optical coherence tomography.
<table>
<thead>
<tr>
<th>Clinical Event</th>
<th>1 Year Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angina</td>
<td>2/40 – 5%</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>0%</td>
</tr>
<tr>
<td>Scaffold Thrombosis</td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>0%</td>
</tr>
<tr>
<td>Sub-Acute (6 weeks)</td>
<td>1/40 – 2.5%</td>
</tr>
<tr>
<td>Late</td>
<td>0%</td>
</tr>
<tr>
<td>Target Lesion Revascularization</td>
<td>0%</td>
</tr>
<tr>
<td>Target Vessel Revascularization</td>
<td>2/40 – 5%</td>
</tr>
<tr>
<td>Death</td>
<td>0%</td>
</tr>
</tbody>
</table>
Absorb
Bioresorbable Vascular Scaffold System

Clinical Overview

Conclusion:

Dr. E. Christiansen
Aarhus University Hospital,
Denmark

- No additional MACE between 3-4 years
- 0% scaffold thrombosis

44% B2/C Type Lesions

1488-day HR
0.76 [0.37, 1.55]
p=0.4447

Δ=3.4%

<table>
<thead>
<tr>
<th>Time After Index Procedure (days)</th>
<th>Absorb</th>
<th>XIENCE (3.0x18, subgroup, SPIRIT I/II/III RCT) Patients at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>101</td>
<td>227</td>
</tr>
<tr>
<td>37</td>
<td>99</td>
<td>224</td>
</tr>
<tr>
<td>194</td>
<td>96</td>
<td>219</td>
</tr>
<tr>
<td>284</td>
<td>96</td>
<td>211</td>
</tr>
<tr>
<td>303</td>
<td>96</td>
<td>204</td>
</tr>
<tr>
<td>573</td>
<td>94</td>
<td>202</td>
</tr>
<tr>
<td>758</td>
<td>92</td>
<td>191</td>
</tr>
<tr>
<td>1123</td>
<td>91</td>
<td>182</td>
</tr>
<tr>
<td>1488</td>
<td>88</td>
<td>174</td>
</tr>
</tbody>
</table>

Source: E. Christiansen, ACC 2014

Information contained herein for distribution outside the U.S. only.
Outcomes in Real World Patient Populations

Conclusion:

"Emerging data from real-world expanded use registries suggest that Absorb BVS use is feasible and safe in a wide variety of patients (from low to high risk) and lesions (from simple to complex)."

<table>
<thead>
<tr>
<th>Patient Population</th>
<th>Study</th>
<th>Clinical Events</th>
<th>Scaffold Thrombosis</th>
<th>Study Demographics</th>
<th>Follow-Up Time</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Comers</td>
<td>ASSURE Pt: D. Mathey</td>
<td>5% MACE, 2.8% TLR</td>
<td>0%</td>
<td>27% MI; 25.7% diabetics; 64.6% B2/C type lesions</td>
<td>12 months</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>BVS EXPAND (excluding STEMI) Pt: R. van Geuns</td>
<td>3.3% MACE, 2.2% TLR</td>
<td>2.2% def ST (4) (due to high complexity of lesions and patients with co-morbidities)</td>
<td>41.1% B2 type lesions or higher; 38.5% MVD; 29.1% bifurcation; 25.41 mm lesion length</td>
<td>6 months</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>GHOST Registry Pt: C. Tumburino</td>
<td>1.8% MACE, 1.8% TVF</td>
<td>1.07% (3 events in a 280 patient 30 day follow-up population)</td>
<td>50% ACS (33% NSTEMI/STEMI); 21.2 mm lesion length; 49.6% B2/C lesions; 15.8% bifurcations; 9% CTO; 5.7% ISR</td>
<td>6 months</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>ABSORB FIRST Pt: A. Seth & E. Eckhart</td>
<td>0% Death</td>
<td>0.3% sub-acute ST</td>
<td>38% MI (25.8% acute MI); 11.9% bifurcation; 10.5% total occlusion; 46.7% B2/C type lesions; 46.1% MVD</td>
<td>1 month</td>
<td>800</td>
</tr>
<tr>
<td>ACS</td>
<td>POLAR ACS Pt: D. Dudek</td>
<td>3.2% MI, 0% TLR, 1.1% TVR</td>
<td>1.1% def ST (due to DAPT discontinuation)</td>
<td>16% STEM; 38% NSTEMI; 46% unstable angina</td>
<td>12 months</td>
<td>100</td>
</tr>
<tr>
<td>STEMI</td>
<td>PRAGUE-19 Pt: P. Widimsky</td>
<td>1 Death</td>
<td>1 ST (due to DAPT discontinuation)</td>
<td>100% STEM, all Killip I-II</td>
<td>To date</td>
<td>76</td>
</tr>
<tr>
<td>CTO</td>
<td>CTO Pilot Study Pt: A. Serra</td>
<td>0% MACE</td>
<td>0%</td>
<td>100% CTO; 85.7% stable angina; 26% 3-vessel disease; 25.8% J-CTO score difficult/very difficult; 18.6 mm occlusion length</td>
<td>6 months</td>
<td>33</td>
</tr>
</tbody>
</table>

Goal of Vascular Reparative Therapy (VRT): Improved long-term outcomes

Goals for Vascular Reparative Therapy (VRT)

- Best-in-class DES
- VRT: Improved long-term outcomes
- Delayed disease progression
- Late lumen gain
- Vasomotion
- Functional endothelium
- Mechanical conditioning
- Scaffold degradation

Natural Vessel Function

- Revascularizes
- PCI
- Native CAD

Time
THANK YOU